Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea
نویسندگان
چکیده
[1] This study analyzes the effects of thermocline shoaling on the ocean internal wave (IW) generation in the north South China Sea (NSCS). Seven years of satellite synthetic aperture radar (SAR) images from 1995 to 2001 are used for the statistical analysis of IW occurrence, and field measurements of sea surface wind, sea state, and vertical temperature profiles are used for analyzing IW generation and SAR imaging conditions. Latitudinal distribution of IW packets shows that 22% of IW packets distributed in the east of 118 E obviously originate from the Luzon Strait, and 78% of IW packets west of 118 E may propagate from the east or evolve into the solitons originating from the east boundary owing to the fission effect of shoaling thermocline. The yearly distribution of IW occurrence frequencies reveals an interannual variability, implying that there are long-term and large-scale processes modifying the SAR-observed IW occurrence. The monthly SAR-observed IW occurrence frequencies show that the high frequencies are distributed from April to July and reach a peak in June with a maximum frequency of 20%. The low occurrence frequencies are distributed in winter from December to February of next year with a minimum frequency of 1.5% in February. This study proposes that the IW generation needs the necessary and sufficient conditions: initial disturbance formation and wave amplitude growth. Owing to the dissipation effect on the initial disturbance, only fully grown waves have a chance to radiate out of the source region. A physical model and PKdV equation are adopted for analyzing the sufficient conditions for solitary IW amplitude growth. The results indicate that the thermocline shoaling provides the forcing to soliton amplitude growth, so that the soliton amplitude growth ratio (SAGR) serves as a decisive factor for the IW occurrence frequency. Theoretical analysis predicts a linear relation between the two. Application of theoretical models to field measurements in the Luzon Strait gives a correlation coefficient as high as 0.845 with a confidence level of 99% for months from March to November. The linear regression gives a correlation coefficient (R) of 0.6519 and a SAGR threshold (minimum) value of 0.90 for IW occurrence. According to the theoretical solutions, the eastward propagating disturbances have no chance to grow up, so that they hardly appear on the east side of the submarine ridges in the eastern Luzon Strait.
منابع مشابه
Multimodal structure of baroclinic tides in the South China Sea
The modelling of baroclinic tides generated in the northern South China Sea is studied using a fully-nonlinear non-hydrostatic numerical model. The focus of the modelling efforts was on the vertical structure of internal waves in the vicinity of the Luzon Strait. The barotropic tidal flow interacting with a two-ridge bottom topography in the area of the Luzon Strait produces a complex baroclini...
متن کاملThe Disintegration (or Not) of the Nonlinear Internal Tide
The objectives are to use a combination of theoretical and numerical models to study the evolution of the internal tide and its possible disintegration into internal solitary waves. A central aspect of this work is to explore the role of rotation in the process. Rotation permits the presence of periodic, nonlinear inertia-gravity waves (i.e., the tide) that can act as attractors and arrest the ...
متن کاملThree‐dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea
[1] We present the results of three‐dimensional, nonhydrostatic simulations of internal tides and waves in the South China Sea (SCS) using the SUNTANS model. Model results accurately predict the observed wave arrival times at two mooring locations in the SCS. Internal wave amplitudes are underpredicted which causes underprediction of internal wave speeds due to a lack of amplitude dispersion. W...
متن کاملAn extreme internal solitary wave event observed in the northern South China Sea
With characteristics of large amplitude and strong current, internal solitary wave (ISW) is a major hazard to marine engineering and submarine navigation; it also has significant impacts on marine ecosystems and fishery activity. Among the world oceans, ISWs are particular active in the northern South China Sea (SCS). In this spirit, the SCS Internal Wave Experiment has been conducted since Mar...
متن کامل